
Real-time Synthesis of Footfall Sounds on Sand and Snow, and Wood

Chirag Mehta
chirag@chir.ag

Advisor: Dr. Dinesh Pai

Abstract

Since the early first-person shooter video
games, prerecorded Foley sounds have
imparted the desired aural realism. However,
static sound clips have reached their limits and
with the demand for increasingly realistic
environments, sound clips must be rendered in
real-time akin to 3D graphics. This paper
proposes a rudimentary method to synthesize
the sound of footfalls on various surfaces like
sand, snow, and wood in real-time.
Additionally, the paper describes a simple
algorithm to generate footfalls given the
weight and walking/running speed of the
human. No digitally sampled files are used in
the synthesis of any sounds. We propose a
black box that generates the sound of walking,
running, and jogging on sand, snow, and wood
with minimal input parameters like weight,
speed, crunchiness, grain-size, woodenness,
creakiness etc.

1. Introduction

One of the most common methods to
synthesize sound is by physical modeling. By
applying their modal algorithm, Pai, van den
Doel [1] et al., were able to render the sound of
a ball dropping and rolling within a three
dimensional virtual frying pan. With their
JASS package, Pai, van den Doel [2] showed
how modal algorithms can be used to render
sounds like creaks and bells. We propose a
simpler and less CPU-intensive algorithm to
synthesize sounds such as knocks on wood,
carpet, as well as wooden creaks that require
only a fading sine wave function.

"All sound is an integration of grains,
of elementary sonic particles, of sonic
quanta."

-Xenakis (1971).

Another common method, which is often
employed to enrich the texture of notes
generated by music synthesizers, is granular
synthesis. “Granular synthesis of sound
involves generating thousands of very short
sonic grains to form larger acoustic events”
[Roads, 3]. “These sound ‘grains’ that are less

than 50 ms in duration and typically in the
range of 10-30 ms with typical grain densities
from several hundred to several thousand
grains per second; the grain itself may come
from a Wavetable (e.g. sine wave), FM
synthesis or sampled sound” [Traux, 4].
Granular synthesis is the most appropriate
technique for rendering the sound of footfalls
on sand, snow, and other granular surfaces. We
will see how sound grains can be created using
a simple white-noise generator.

While more complex methods can be
implemented to produce even more realistic
sound, the algorithms proposed herein have
minimal processing demands and hence can be
incorporated into CPU-intensive video games
without major performance loss. In addition to
games, footfall synthesis can be applied to
virtual reality and film production.

2. Architecture

Figure 1 shows the basic architecture of the
system. FootFallStream generates footfalls via
live input from hardware, data files recorded
previously, or using the FootModel footfall
generator. FootFallSynth continuously
retrieves the latest footfall from
FootFallStream and synthesizes the sound
using functions within the SoundGrainModel.
SoundGrainPlayer renders the sound using
Java Sound API. The sound rendered by
SoundGrainPlayer may be directed to a
standard ‘wav’ file format with minimal
coding.

Footfall Stream

AudioOutDisplay

Footfall
Synthesizer

Sound Grain
Model

Sound Grain
Player

Display

Live Input Recording Modeling

Figure 1: Footfall Synthesis Architecture

The Graphical User Interface (GUI) provides
the user with the ability to change the
walking/running speed, weight, surface
crunchiness, compression (compactability),
grain-size, carpet-thumps, woodenness, and
creakiness in real-time. For debugging
purposes, FootFallStream displays the footfall
preview and FootFallSynth displays the
waveform via an oscilloscope on the screen.

3. Synthesis Resolution

A single footfall is generated at a resolution of
16 cells x 44 cells (32x44 cells for two feet) as
shown in Figure 2. Pressure values per cell
approximately range from 0 (white) to 50
(bright red). Depending on the intensity of
these pressure values, FootFallSynth generates
the appropriate sound.

Figure 2: Footfall Preview

There are two ways to render sound given the
array[32x44] of pressure cells. The first option,
fast but less precise of the two, is implemented
in FootFallSynthByFrame. It calculates the
maximum, average, variance, and standard
deviation of the pressure cells in the current
frame and renders the compound sound by the
algorithms that follow. The simpler, more
accurate, but quite processor intensive
technique is to generate an individual sound
grain for each cell in the frame.
FootFallSynthByCell (not implemented yet)
can render granular sound in this manner.

Given the current state of technology and
available processing power on a typical PC, we
shall restrict our attention to
FootFallSynthByFrame.

4. Synthesis Engine

At the core of the synthesis engine,
SoundGrainModel, lie two sound grain
generators: White Noise and Fading Sine
Wave. Input parameters for White Noise are
length/duration, frequency, and amplitude. For
Fading Sine Wave the inputs are length,
frequency, and the starting amplitude; ending
amplitude is zero.

Sounds created by friction, i.e. scratching,
rubbing, walking on sand and snow etc., seem
to have almost no distinguishable wave
patterns or frequencies. Being a mix of
thousands of frequencies, we show that
synthesis of such sounds can be approximated
using white noise set at the appropriate
frequency and amplitude. Lower frequencies
of white noise generate sounds similar to
winds and ocean waves, whereas higher
frequencies sound akin to bad reception on FM
radios. Gaussian white noise and pink noise
yielded results very similar to pure white noise
and hence were not implemented in the
generators.

The Fading Sine Wave starts at given
amplitude and frequency and fades out linearly
to silence, zero amplitude. Lower frequencies
of fading sine waves sound such as thumps,
knocks, and creaks while higher frequencies
sound like pops, electric bells, and water
drops.

For the following algorithms, the
FootFallStream returns the latest frame to
render, given the user-selected speed and
weight parameters. The sound is generated at
44.1 kHz bit rate. The FootFallStream speed
(frames per second) is in the range of 25fps -
75fps.

Model Parameter:

Grain Length: Bit Rate / FPS

Consequently, the number of sound grains per
second is 25-75 with respective durations
between 40ms and 13ms. Depending on the
speed of the processor, multiple grains may be
generated for a single frame to enrich the
sound texture.

4.1. Synthesizing Sand

The smaller the grain size is, the closer the
sound is to being pure white noise. As grains
increase in size, physical models approximate
their sound with greater accuracy. The process

of rendering sand grains mostly consists of
playing white noise at the appropriate
frequency and amplitude.

Model Parameters:

Pressure : Frame Max ÷ Stream Max
HeelToe : (1-(1÷StdDev))

Amplitude: Grain-size
 * Pressure
 * HeelToe

Frequency: 44.1 * 0.4 = 17.6 kHz

WhiteNoise(Duration, Amp, Freq)

Pressure (from 0 to 1) is used to determine
how strongly the foot is being pressed onto the
surface in a given frame, compared to the
maximum value possible for the stream. The
amplitude is the product of user-selected grain-
size (from 0 = silence to 1 = loudest) with
pressure and a measure of heel-toe impact.
When the whole foot is pressed against the
surface, variance is low and HeelToe is
generally small. When heel or toes are strongly
pressed, variance is high and HeelToe is large.
The sound of footfalls on sand is generated
whenever the heels or toes hit the surface in a
walking/running motion (high HeelToe) or
when feet are firmly on the ground (high
pressure), as if sinking in the sand. For sand,
the most realistic white noise frequency was
found to be at 17.6 kHz by experimentation.

4.2. Synthesizing Snow

Crunching is defined as the high-pitched sound
made when one steps on snow, breaking
through its different layers. Compression is the
low-frequency sound created due to
compacting of these layers into ice or icy
slush. Compression takes places as long as
more pressure is being applied in each frame,
while crunching happens throughout the
duration of the footfall.

Model parameters for Compression:

Pressure : Variance ÷ Total Cells
Amplitude: Compression * Pressure2
Frequency: 1.1 kHz to 2.2 kHz
 (50 grains)

If Pressure has increased:
 WhiteNoise(Duration, Amp, Freq)

Model parameters for Crunching:

Pressure : Variance ÷ Total Cells
Amplitude: Crunchiness * Pressure2
Frequency: 0.8 kHz to 44.1 kHz
 (50 grains)

If Pressure has changed:
 WhiteNoise(Duration, Amp, Freq)

Calculate the pressure (0-1) as the Variance ÷
Total number of non-blank cells. Here the
heels and toes are even more pronounced than
Frame Max ÷ Stream Max. Amplitude is the
product of user-selected compression or
crunchiness parameters and pressure, squared
for increased emphasis. Low values of
pressure result in almost no sound whereas
high values result in loud sound. Instead of
rendering just one grain (like for sand), snow
sounds best when between fifty and a hundred
grains are used for rendering compression and
crunchiness, each generated within a range of
frequencies.

4.3. Rendering Wood

A StreamAnalyzer is used to detect peaks in
the variance of FootFallStream frames. At
every peak a single sound grain for wood
knocking and carpet thump sound is generated
as follows.

Model Parameters for Knocks:

Pressure : Frame Max ÷ Stream Max
Amplitude: Woodenness * Pressure

Frequency: 150 Hz
 + 250 * Woodenness
 + 350 * Pressure

Range : 150 Hz - 750 Hz

If Peak detected
 FadeSineWave(Duration, Amp, Freq)

Model Parameters for Carpet:

Pressure : Frame Max ÷ Stream Max
Amplitude: Carpet * Pressure

Frequency: 50 Hz
 + 50 * Carpet
 + 50 * Pressure

Range : 100 Hz - 300 Hz

If Peak detected
 FadeSineWave(Duration, Amp, Freq)

Creaking is handled differently, without peak-
detection, since it is a continuous sound. The
primary difference between creaking and
knocks or carpet is the duration.

Model Parameters for Creaking:

Duration : Bit Rate / 400

Pressure : Frame Max ÷ Stream Max
HeelToe : (1-(1÷StdDev))

Amplitude: Creakiness
 * Pressure
 * HeelToe

Frequency: 4 kHz to 9 kHz

If Pressure has changed:
 FadeSineWave(Duration, Amp, Freq)

Creaks are very short duration sounds
generated by stick-slip oscillations. We
simulate rudimentary creaking by the same
FadeSineWave function as knocks and carpet
thumps.

5. Generating footfalls

Taking the footprints in Figure 3 as the
original frame, a very simple algorithm was
applied to generate sequence of footfalls with
each call to GetFrame(), depending on the
speed and weight of the human.

Figure 3: Original Footprints

Initialize():

 Load FootOriginal
 CurrentPosition = Heel

End Initialize()

GetFrame():

 Weight = User-selected (0-1)
 HeelPressure = Proximity to Heel

 FallOff = Distance from
 CurrentPosition

 MidPoint = Distance from
 Center-axis of Foot

 CellPressure = FootOriginal[Cell]
 * Weight
 * HeelPressure
 * FallOff
 * MidPoint

 Render Each Cell

 CurrentPosition = Move Up With Speed

 If CurrentPosition = Top Then
 CurrentPosition = Heel

 Return FootFall Frame

End GetFrame()

6. Demo

Full source-code with Java-implementation of
this algorithm is available at the following
URL:

http://chir.ag/493

Require JRE 1.4.2 or above with soundcard.
JavaWebStart preferable but not required.

7. Conclusion

More work is required to improve the sounds
of creaking. The system doesn’t render sound
correctly at very low values for weight. With
the completion of the FootFallSynthByCell
algorithm, both these issues can be resolved.

References:

[1] K. van den Doel, P.G. Kry and D.K. Pai,
“FoleyAutomatic: Physically-based Sound
Effects for Interactive Simulation and
Animation”, in Computer Graphics (ACM
SIGGRAPH 01 Conference Proceedings), Los
Angeles, USA, 2001, August 12-17.

[2] K. van den Doel and D.K. Pai, “JASS: A
Java Audio Synthesis System For
Programmers”, in Proceedings of the 2001
International Conference on Auditory Display,
Espoo, Finland, 2001, July 29-August 1.
http://www.cs.ubc.ca/~kvdoel/jass/jass.html

[3] C. Roads. Granular synthesis of sound. In
Foundations of Computer Music. C. Roads and
J. Strawn, eds. MIT Press, Cambridge, pp.
145—159, 1985.

[4] Truax, B. (1988) Real-time granular
synthesis with a digital signal processor.
Computer Music Journal, 12(2), 14-26.
http://www.sfu.ca/~truax/gran.html

Bibliography:

P. Cook, “Modeling Bill's Gait: Analysis and
Parametric Synthesis of Walking
Sounds,” Proc. Audio Engineering Society 22
Conference on Virtual, Synthetic
and Entertainment Audio, Helsinki, Finland,
June 2002.

Bencina, R. (2004), “Implementing Real-Time
Granular Synthesis.” In Greenbaum (Ed),
Audio Anecdotes, A.K. Peters, Natick.

Castle G., Adcock M., Barrass S., “Integrated
Modal and Granular Synthesis of Haptic
Tapping and Scratching Sounds.

